sábado, 11 de febrero de 2012

LA GEOMETRIA ANALITICA : DESCARTES Y FERMAT .






 La Geometría Analítica “de Descartes y Fermat”  no fue un producto exclusivo de sus investigaciones, sino más bien, la síntesis de varias tendencias matemáticas convergentes en los siglos XVI y XVII. Entre los autores que contribuyeron a las tendencias citadas pueden contarse Apolonio, Oresme, Vieta y muchos otros matemáticos.Resulta de particular interés, por su magnitud e importancia, el trabajo de Apolonio (262 –190 a. de C.),  Las Cónicas, en el que ya se advierten, respecto al uso de coordenadas, muchos aspectos tan similares a los acercamientos modernos, tanto que, en algunas ocasiones, es juzgado como una geometría analítica que se anticipó a aquella de Descartes y Fermat por 1800 años, en la que se identifican formas retóricas de las ecuaciones de las curvas establecidas por Apolonio como relaciones entre las abscisas y las ordenadas. Las abscisas y las ordenadas de la época eran aplicaciones de líneas de referencia en general, y de un diámetro y una tangente en sus extremos en particular, lo que no hace diferencias esenciales con un marco coordenado rectangular, o más generalmente, oblicuo. En este sistema de referencia, las distancias medidas a lo largo del diámetro desde el punto de tangencia son las abscisas, y los segmentos paralelos a la tangente e intersecados entre el eje y la curva son las ordenadas.
El nombre de geometría analítica corrió parejo al de geometría cartesiana, y ambos son indistinguibles. Hoy en día, paradójicamente, se prefiere denominar geometría cartesiana al apéndice del Discurso del método, mientras que se entiende que geometría analítica comprende no sólo a la geometría cartesiana (en el sentido que acabamos de citar, es decir, al texto apéndice del Discurso del método), sino también todo el desarrollo posterior de la geometría que se base en la construcción de ejes coordenados y la descripción de las figuras mediante funciones algebraicas o no hasta la aparición de la geometría diferencial de Gauss (decimos "paradójicamente" porque se usa precisamente el término "geometría cartesiana" para aquello que el propio Descartes bautizó como "geometría analítica").
El problema es que durante ese periodo no existe una diferencia clara entre geometría analítica y análisis matemático esta falta de diferencia se debe precisamente a la identificación hecha en la época entre los conceptos de función y curva, por lo que resulta a veces muy difícil intentar determinar si el estudio que se está realizando corresponde a una u otra rama.
La geometría diferencial de curvas sí que permite un estudio mediante un sistema de coordenadas, ya sea en el plano o en el espacio tridimensional. Pero en el estudio de las superficies, en general, aparecen serios obstáculos. Gauss salva dichos obstáculos creando la geometría diferencial, y marcando con ello el fin de la geometría analítica como disciplina. Es con el desarrollo de la geometría algebraica cuando se puede certificar totalmente la superación de la geometría analítica.
Es de puntualizar que la denominación de analítica dada a esta forma de estudiar la geometría provocó que la anterior manera de estudiarla (es decir, la manera axiomático-deductiva, sin la intervención de coordenadas) se terminara denominando, por oposición, geometría sintética, debido a la dualidad análisis-síntesis.
Actualmente el término geometría analítica sólo es usado en enseñanzas medias o en carreras técnicas en las que no se realiza un estudio profundo de la geometría.

Pero es sin duda la aparición de la Geometría Cartesiana lo que marca la Geometría en la Edad Moderna. Descartes propone un nuevo método de resolver problemas geométricos, y por extensión, de investigar en Geometría. En un plano traza dos rectas perpendiculares (ejes) -que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical-, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se de también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado (x,y), siendo x la distancia a uno de los ejes (por convenio será la distancia al eje vertical) e y la distancia al otro eje (al horizontal).
En la coordenada x, el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha del eje vertical (eje de ordenadas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada y, el signo positivo (también se suele omitir) indica que la distancia se toma hacia arriba del eje horizontal (eje de abscisas), tomándose hacia abajo si el signo es negativo (tampoco se omite nunca en este caso). A la coordenada x se la suele denominar abscisa del punto, mientras que a la y se la denomina ordenada del punto.
Existe una cierta controversia (aun hoy) sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como ""Geometría Analítica"", apéndice al ""Discurso del Método"", de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuvieran acceso a su obra.
Lo novedoso de la Geometría Analítica (como también se conoce a este método) es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (v.g.: 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (v.g.: la circunferencia x2 + y2 = 4, la hipérbola xy = 1 ). Esto convertía toda la Geometría griega en el estudio de las relaciones que existen entre polinomios de grados 1 y 2. El Desde un punto de vista formal (aunque ellos aun lo sabían), los geómetras de esta época han encontrado una relación fundamental entre la estructura lógica que usaban los geómetras griegos (el plano, la regla, el compás...) y la estructura algebraica del ideal formado por los polinomios de grados 0, 1 y 2 del anillo de polinomios , resultando que ambas estructuras son equivalentes. Este hecho fundamental (no visto con nitidez hasta el desarrollo del Álgebra Moderna y de la Lógica Matemática entre finales del siglo XIX y principios del siglo XX) resulta fundamental para entender por qué la Geometría de los griegos puede desprenderse de sus axiomas y estudiarse directamente usando la axiomática de Zermelo-Fraenkel, como el resto de la Matemática.

En resumen la  geometría analítica  es el  estudio de ciertos objetos geométricos mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Se podría decir que es el desarrollo histórico que comienza con la geometría cartesiana con Rene Descartes y concluye con la aparición de la geometría diferencial con Carl Friedrich Gauss y más tarde con el desarrollo de la geometría algebraica. Los dos problemas fundamentales de la geometría analítica son: Dado el lugar geométrico en un sistema de coordenadas, obtener su ecuación. Dada la ecuación en un sistema de coordenadas, determinar la gráfica o lugar geométrico de los puntos que la cumplen. Lo novedoso de la geometría analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función u otro tipo de expresión matemática. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (por ejemplo, 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (la circunferencia x2 + y2 = 4, la hipérbola xy = 1). Contenido [mostrar] Construcciones fundamentales [editar] En un sistema de coordenadas cartesianas, un punto del plano queda determinado por dos números, llamados abscisa y ordenada del punto. Mediante ese procedimiento a todo punto del plano corresponden siempre dos números reales ordenados (abscisa y ordenada), y recíprocamente, a un par ordenado de números corresponde un único punto del plano. Consecuentemente el sistema cartesiano establece una correspondencia biunívoca entre un concepto geométrico como es el de los puntos del plano y un concepto algebraico como son los pares ordenados de números. Esta correspondencia constituye el fundamento de la geometría analítica. Con la geometría analítica se puede determinar figuras geométricas planas por medio de ecuaciones e in-ecuaciones con dos incógnitas. Éste es un método alternativo de resolución de problemas, o cuando menos nos proporciona un nuevo punto de vista con el cual poder atacar el problema.Lo novedoso de la geometría analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función u otro tipo de expresión matemática. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (por ejemplo, 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (la circunferencia x2 + y2 = 4, la hipérbola xy = 1).Con la geometría analítica se puede determinar figuras geométricas planas por medio de ecuaciones e inecuaciones con dos incógnitas. Éste es un método alternativo de resolución de problemas, o cuando menos nos proporciona un nuevo punto de vista con el cual poder atacar el problema.
Se cuestiona mucho ,la aplicación de ciertos temas  en la vida diaria y es frecuente encontrar personas diciendo..Para qué me servirá la Geometria   u otro conocimiento matemático en mi vida cotidiana.El “mundo real” significa el entorno  natural, social  y  cultural  donde 
vivimos.






Un reto importante es dar a conocer que la Geometría ,como rama de las Matemáticas tiene aplicación en la vida cotidiana y que enlaza dos conceptos fundamentales dentro del mundo de las matemáticas: La geometría y la Trigonometría.   De ahí  la importancia de la enseñanza de la geometría en el ámbito escolar responde, en primer lugar, al papel que la geometría desempeña en el contexto o entorno de vida.
Un conocimiento geométrico básico es indispensable para desenvolverse en la vida cotidiana: para orientarse reflexivamente en el espacio; para hacer estimaciones sobre formas y distancias; para hacer apreciaciones y cálculos relativos a la distribución de los objetos en el espacio...
La geometría está presente en múltiples ámbitos del sistema productivo de nuestras actuales sociedades (producción industrial, diseño, arquitectura, topografía, etc...).La forma geométrica es también un componente esencial del arte, de las artes plásticas, y representa un aspecto importante en el estudio de los elementos de la naturaleza.


DELIA DUCREAUX.

No hay comentarios:

Publicar un comentario